DEGREE BOUNDS FOR SEPARATING INVARIANTS

MARTIN KOHLS AND HANSPETER KRAFT

Abstract. If V is a representation of a linear algebraic group G, a set S of G-invariant regular functions on V is called separating if the following holds: If two elements $v, v' \in V$ can be separated by an invariant function, then there is an $f \in S$ such that $f(v) \neq f(v')$. It is known that there always exist finite separating sets. Moreover, if the group G is finite, then the invariant functions of degree $\leq |G|$ form a separating set. We show that for a non-finite linear algebraic group G such an upper bound for the degrees of a separating set does not exist.

If G is finite, we define $\beta_{\text{sep}}(G)$ to be the minimal number d such that for every G-module V there is a separating set of degree $\leq d$. We show that for a subgroup $H \subset G$ we have $\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \leq [G:H] \cdot \beta_{\text{sep}}(H)$, and that $\beta_{\text{sep}}(G) \leq \beta_{\text{sep}}(G/H) \cdot \beta_{\text{sep}}(H)$ in case H is normal. Moreover, we calculate $\beta_{\text{sep}}(G)$ for some specific finite groups.

1. Introduction

Let K be an algebraically closed field of arbitrary characteristic. Let G be a linear algebraic group and X a G-variety, i.e. an affine variety equipped with a (regular) action of G, everything defined over K. We denote by $\mathcal{O}(X)$ the coordinate ring of X and by $\mathcal{O}(X)^G$ the subring of G-invariant regular functions. The following definition is due to Derksen and Kemper [DK02, Definition 2.3.8].

Definition 1. Let X be a G-variety. A subset $S \subset \mathcal{O}(X)^G$ of the invariant ring of X is called separating (or G-separating) if the following holds:

For any pair $x, x' \in X$, if $f(x) \neq f(x')$ for some $f \in \mathcal{O}(X)^G$ then there is an $h \in S$ such that $h(x) \neq h(x')$.

It is known and easy to see that there always exists a finite separating set (see [DK02, Theorem 2.3.15]).

If V is a G-module, i.e. a finite dimensional K-vector space with a regular linear action of G, we would like to know a priori bounds for the degrees of the elements in a separating set. We denote by $\mathcal{O}(V)_d \subset \mathcal{O}(V)$ the homogeneous functions of degree d (and the zero function), and put $\mathcal{O}(V)_{\leq d} := \bigoplus_{i=0}^{d} \mathcal{O}(V)_i$.

Definition 2. For a G-module V define

$$\beta_{\text{sep}}(G,V) := \min\{d \mid \mathcal{O}(V)_{\leq d}^G \text{ is } G\text{-separating}\} \in \mathbb{N},$$

and set

$$\beta_{\text{sep}}(G) := \sup\{\beta_{\text{sep}}(G,V) \mid V \text{ a } G\text{-module}\} \in \mathbb{N} \cup \{\infty\}.$$
The group G is finite if and only if $\beta_{\text{sep}}(G)$ is finite.

In order to prove this we will show that $\beta_{\text{sep}}(K^+) = \infty$, that $\beta_{\text{sep}}(K^*) = \infty$, that $\beta_{\text{sep}}(G) = \infty$ for every semisimple group G, and that $\beta_{\text{sep}}(G^0) \leq \beta_{\text{sep}}(G)$ (see section 3, Theorem 1; Recall that G^0 denotes the identity component of G).

Theorem A. Let G be a finite group and $H \subset G$ a subgroup. Then

\[\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \leq |G : H| \beta_{\text{sep}}(H), \text{ and so } \beta_{\text{sep}}(G) \leq |G|. \]

Moreover, if $H \subset G$ is normal, then

\[\beta_{\text{sep}}(G) \leq \beta_{\text{sep}}(G/H) \beta_{\text{sep}}(H). \]

This will be done in section 4 where we formulate and prove a more precise statement (Theorem 2).

Finally, we have the following explicit results for finite groups.

Theorem B. Let G be a finite group and $H \subset G$ a subgroup. Then

\[\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \leq |G : H| \beta_{\text{sep}}(H), \text{ and so } \beta_{\text{sep}}(G) \leq |G|. \]

Remark 1. If $\phi : X \to Y$ is G-separating and $X' \subset X$ a closed G-stable subvariety, then the induced morphism $\phi|_{X'} : X' \to Y$ is also G-separating.

Remark 2. Choose a closed embedding $Y \subset K^m$ and denote by $\varphi_1, \ldots, \varphi_m \in \mathcal{O}(X)$ the coordinate functions of $\varphi : X \to Y \subset K^m$. If φ is separating, then $\{\varphi_1, \ldots, \varphi_m\}$ is a separating set. The converse holds if G is reductive, but not in general, as shown by the standard representation $K^+ \to \text{GL}_2(K)$ given by $s \mapsto \begin{bmatrix} 1 & s \\ 0 & 1 \end{bmatrix}$ which does not admit a separating morphism.

\[\begin{array}{c}
\text{2. Some useful results} \\
\end{array} \]

We want to recall some facts about the β_{sep}-values, and compare with the results for the classical β-values for generating invariants introduced by Schmid [Sch91]:

$\beta(G)$ is the minimal $d \in \mathbb{N}$ such that, for every G-module V, the invariant ring $\mathcal{O}(V)^G$ is generated by the invariants of degree $\leq d$.

By Derksen and Kemper [DK02, Corollary 3.9.14], we have $\beta_{\text{sep}}(G) \leq |G|$. This is in perfect analogy to the Noether bound, which says $\beta(G) \leq |G|$ in the non-modular case (i.e. $\text{char}(K)$ $\not| G$), see [Fle00, Fog01, Sch91]. Of course we have $\beta_{\text{sep}}(G) \leq \beta(G)$, so when good upper bounds for $\beta(G)$ are known, then we have an upper bound for $\beta_{\text{sep}}(G)$.

In characteristic zero and in the non-modular case there are the bounds by Schmid [Sch91] and by Domokos, Hegedüs, and Sezer [DH00, Sez02] which
improve the Noether bound. In particular, [Sez02] shows for non-modular non-cyclic groups \(G \) that \(\beta(G) < \frac{1}{2}|G| \).

For a linear algebraic group \(G \) it is shown by BRYANT, DERRIEN and KEMPER [BK05, DK04] that \(\beta(G) < \infty \) if and only if \(G \) is finite and \(p \nmid |G| \) which is the analogon to our Theorem A. For further results on degree bounds, we recommend the overview article of WEHLAU [Weh06].

The following results will be useful in the sequel.

Proposition 1. Let \(H \subset G \) be a closed subgroup, \(X \) an affine \(G \)-variety and \(Z \) an affine \(H \)-variety. Let \(\iota : Z \to X \) be an \(H \)-equivariant morphism and assume that \(\iota^* \) induces a surjection \(\mathcal{O}(X)^G \to \mathcal{O}(Z)^H \). If \(S \subset \mathcal{O}(X)^G \) is \(G \)-separating, then the image \(\iota^*(S) \subset \mathcal{O}(Z)^H \) is \(H \)-separating.

Proof. Let \(f \in \mathcal{O}(Z)^H \) and \(z_1, z_2 \in Z \) such that \(f(z_1) \neq f(z_2) \). By assumption \(f = \iota^*(f) \) for some \(f \in \mathcal{O}(X)^G \). Put \(x_i := \iota(z_i) \). Then \(f(x_1) = f(z_1) \neq f(z_2) = f(x_2) \). Thus we can find an \(h \in S \) such that \(h(x_1) \neq h(x_2) \). It follows that \(\tilde{h} := \iota^*(h) \in \iota^*(S) \) and \(\tilde{h}(z_1) = h(x_1) \neq h(x_2) = \tilde{h}(z_2) \).

Remark 3. In general, the inverse map \((\iota^*)^{-1} \) does not take \(H \)-separating sets to \(G \)-separating sets. Take \(K^+ \subset SL_2 \) as the subgroup of upper triangular unipotent matrices, \(X = K^2 \oplus K^2 \oplus K^2 \) the sum of three copies of the standard representation of \(SL_2 \) and \(Z = K^2 \oplus K^2 \) the sum of two copies of the standard representation of \(K^+ \). Then \(\iota : Z \to X \), \((v,w) \mapsto ((1,0),v,w) \) is \(K^+ \)-equivariant and induces an isomorphism \(\mathcal{O}(X)^{SL_2} \to \mathcal{O}(Z)^{K^+} \) (Roberts [Rob61]). In fact, choosing the coordinates \((x_0,x_1,y_0,y_1,z_0,z_1) \) on \(X \) and \((y_0,y_1,z_0,z_1) \) on \(Y \), we get from the classical description [dCP76] of the invariants and covariants of copies of \(K^2 \):

\[
\mathcal{O}(X)^{SL_2}(K) = K[y_1x_0 - y_0x_1, z_1x_0 - z_0x_1, y_1z_0 - y_0z_1],
\]

\[
\mathcal{O}(Y)^{K^+} = K[y_1, z_1, y_1z_0 - y_0z_1],
\]

and the claim follows, because \(\iota^*(x_0) = 1, \iota^*(x_1) = 0 \).

Now take \(S := \{y_1, z_1, y_1(y_0z_0 - y_0z_1), z_1(y_1z_0 - y_0z_1)\} \subset \mathcal{O}(Z)^{K^+} \). We show that \(S \) is a \(K^+ \)-separating set, but \((\iota^*)^{-1}(S) \subset \mathcal{O}(X)^{SL_2} \) is not \(SL_2 \)-separating. For the first claim one has to use that if \(y_1 \) and \(z_1 \) both vanish, then the third generator \(y_1z_0 - y_0z_1 \) of the invariant ring \(\mathcal{O}(Y)^{K^+} \) also vanishes. For the second claim we consider the elements \(v = ((0,0), (0,0), (0,0)) \) and \(v' = ((0,0), (1,0), (0,1)) \) of \(X \), which are separated by the invariants, but not by \((\iota^*)^{-1}(S) \).

For the following application recall that for a closed subgroup \(H \subset G \) of finite index the induced module \(\text{Ind}_H^G V \) of an \(H \)-module \(V \) is a finite dimensional \(G \)-module.

Corollary 1. Let \(H \subset G \) be a closed subgroup of finite index and let \(V \) be an \(H \)-module. Then \(\beta_{\text{sep}}(H,V) \leq \beta_{\text{sep}}(G,\text{Ind}_H^G V) \). In particular, \(\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \).

Proof. By definition, \(\text{Ind}_H^G V \) contains \(V \) as an \(H \)-submodule in a canonical way. If \(n := [G:H] \) and \(G = \bigsqcup_{i=1}^n g_i H \), then \(\text{Ind}_H^G V = \bigoplus_{i=1}^n g_i V \). Moreover, the inclusion \(\iota : V \to \text{Ind}_H^G V \) induces a surjection \(\iota^* : \mathcal{O}(\text{Ind}_H^G V)^G \to \mathcal{O}(V)^H \), \(f \mapsto f|_V \). In fact, for \(f \in \mathcal{O}(V)^H \), a preimage \(f \) is given by \(f(g_1v_1, \ldots, g_nv_n) := \sum_{i=1}^n f(v_i) \), \(v_i \in V \), which is easily seen to be \(G \)-invariant. Now the claim follows from Proposition 1 above, because the restriction map \(\iota^* \) is linear and so preserves degrees. \(\square \)
Proposition 2 (Derksen and Kemper [DK02, Theorem 2.3.16]). Let G be a reductive group, V a G-module and $U \subset V$ a submodule. The restriction map $\mathcal{O}(V) \to \mathcal{O}(U)$, $f \mapsto f|_U$ takes every separating set of $\mathcal{O}(V)^G$ to a separating set of $\mathcal{O}(U)^G$. In particular, we have

$$\beta_{\text{sep}}(G,U) \leq \beta_{\text{sep}}(G,V).$$

Let us mention here that in positive characteristic the restriction map is in general not surjective when restricted to the invariants, and so a generating set is not necessarily mapped onto a generating set.

We finally remark that for finite groups there is a G-module V such that $\beta_{\text{sep}}(G,V) = \beta_{\text{sep}}(G)$. The same holds for the β-values in characteristic zero.

Proposition 3. Let G be a finite group and $V_{\text{reg}} = KG$ its regular representation. Then

$$\beta_{\text{sep}}(G) = \beta_{\text{sep}}(G,V_{\text{reg}}).$$

In fact, every G-module V can be embedded as a submodule in $V_{\text{reg}}^{\dim V}$. Since, by [DKW08, Corollary 3.7], $\beta_{\text{sep}}(G,V^m) = \beta_{\text{sep}}(G,V)$ for any G-module V and every positive integer m, the claim follows from Proposition 2.

3. The case of non-finite algebraic groups

In this section we prove the following theorem which is equivalent to Theorem A from the first section.

Theorem 1. For any non-finite linear algebraic group G we have $\beta_{\text{sep}}(G) = \infty$.

We start with the additive group K^+. Denote by $V = Ke_0 \oplus Ke_1 \simeq K^2$ the standard 2-dimensional K^+-module: $s \cdot e_0 := e_0$, $s \cdot e_1 := se_0 + e_1$ for $s \in K^+$. If $\text{char } K = p > 0$ we can “twist” the module V with the Frobenius map $F^n: K^+ \to K^+, s \mapsto s^p$ to obtain another K^+-module which we denote by V_{F^n}.

Proposition 4. Let $\text{char } K = p > 0$ and consider the K^+-module $W := V \oplus V_{F^n}$. We write $\mathcal{O}(W) = K[x_0, x_1, y_0, y_1]$. Then $\mathcal{O}(W)^{K^+} = K[x_1, y_1, x_0^n y_0 - x_1^n y_0]$. In particular, $\beta_{\text{sep}}(K^+,W) = p^n + 1$ and so $\beta_{\text{sep}}(K^+) = \infty$.

Proof. It is easy to see that $f := x_0^n y_1 - x_1^n y_0$ is K^+-invariant. Define the K^+-invariant morphism

$$\pi: W \to K^3, \quad w = (a_0, a_1, b_0, b_1) \mapsto (a_1, b_1, a_0^n b_1 - a_1^n b_0).$$

Over the affine open set $U := \{(c_1, c_2, c_3) \in K^3 \mid c_1 \neq 0\}$, the induced map $\pi^{-1}(U) \to U$ is a trivial K^+-bundle. In fact, the morphism $\rho: U \to \pi^{-1}(U)$ given by $(c_1, c_2, c_3) \mapsto (0, c_1, -c_1^{-p^n} c_3, c_2)$ is a section of π, inducing a K^+-equivariant isomorphism $K^+ \times U \xrightarrow{\sim} \pi^{-1}(U)$, $(s, u) \mapsto s \cdot \rho(u)$. This implies that $\mathcal{O}(W)^{K^+}_{x_1} = K[x_1, x_1^{-1}, y_1, f]$, hence $\mathcal{O}(W)^{K^+} = K[x_0, x_1, y_0, y_1] \cap K[x_1, x_1^{-1}, y_1, f]$, and the claim follows easily.

If K has characteristic zero, we need a different argument. Denote by $V_n := S^n V$ the nth symmetric power of the standard K^+-module $V = Ke_0 \oplus Ke_1$ (see above). This module is cyclic of dimension $n + 1$, i.e. $V_n = \langle K^+ v_n \rangle$ where $v_n := e_0^n$, and for any $s \in K^+, s \neq 0$, the endomorphism $v \mapsto sv - v$ of V_n is nilpotent of rank n. In particular, $V_n^{K^+} = 0$ where $v_0 := e_0^n \in V_n$.

Remark 4. For \(q \geq 1 \) consider the \(q \)th symmetric power \(S^q V_n \) of the module \(V_n \). Then the cyclic submodule \(\langle K^+ v_0^q \rangle \subset S^q V_n \) generated by \(v_0^q \) is \(K^+ \)-isomorphic to \(V_{qn} \), and \(\langle K^+ v_0^q \rangle K^+ = K v_0^q \). One way to see this is by remarking that the modules \(V_n \) are \(\text{SL}_2(K) \)-modules in a natural way, and then to use representation theory of \(\text{SL}_2(K) \).

Proposition 5. Let \(\text{char } K = 0 \). Consider the \(K^+ \)-module \(W = V^* \oplus V_n \) and the two vectors \(w := (x_0, v_0) \) and \(w' := (x_0, 0) \) of \(W \). Then there is a \(K^+ \)-invariant function \(f \in \mathcal{O}(W)^{K+} \) separating \(w \) and \(w' \), and any such \(f \) has degree \(\deg f \geq n + 1 \). In particular, \(\beta_{\text{sep}}(K^+, W) \geq n + 1 \), and so \(\beta_{\text{sep}}(K^+) = \infty \).

Proof. Let \(U_1, U_2 \) be two finite dimensional vector spaces. There is a canonical isomorphism

\[
\Psi : \mathcal{O}(U_1^* \oplus U_2)_{(p,q)} \simeq \text{Hom}(S^q U_2, S^p U_1)
\]

where \(\mathcal{O}(U_1^* \oplus U_2)_{(p,q)} \) denotes the subspace of those regular functions on \(U_1^* \oplus U_2 \), which are bihomogeneous of degree \((p,q) \). If \(F = \Psi(f) \), then for any \(x \in U_1^* \) and \(u \in U_2 \) we have

\[
f(x, u) = x^p(F(u^q)).
\]

(\text{Since we are in characteristic } 0 \text{ we can identify } S^p(U_1^*) \text{ with } (S^p U_1)^*.) Moreover, if \(U_1, U_2 \) are \(G \)-modules, then \(\Psi \) is \(G \)-equivariant and induces an isomorphism between the \(G \)-invariant bihomogeneous functions and the \(G \)-linear homomorphisms:

\[
\Psi : \mathcal{O}(U_1^* \oplus U_2)_{(p,q)}^G \simeq \text{Hom}_G(S^q U_2, S^p U_1).
\]

For the \(K^+ \)-module \(W = V^* \oplus V_n \), we thus obtain an isomorphism

\[
\Psi : \mathcal{O}(V^* \oplus V_n)_{(p,q)}^{K^+} \simeq \text{Hom}_{K^+}(S^q V_n, S^p V).
\]

Putting \(p = n \) and \(q = 1 \) and defining \(f \in \mathcal{O}(V^* \oplus V_n)^{K^+}_{(n,1)} \) by \(\Psi(f) = \text{Id}_{V_n} \), we get

\[
f(w) = f(x_0, v_0) = x_0^0(v_0) = x_0^0(e_0^0) \neq 0, \quad \text{and} \quad f(w') = f(x_0, 0) = 0.
\]

Hence \(w \) and \(w' \) can be separated by invariants.

Now let \(f \) be a \(K^+ \)-invariant separating \(w \) and \(w' \) with \(\deg f = d \). We can clearly assume that \(f \) is bihomogeneous, say of degree \((p,q) \), where \(p + q = d \). Because \(f \) must depend on \(V_n \), we have \(q \geq 1 \). Hence \(f(w') = f(x_0, 0) = 0 \), and so \(f(w) = f(x_0, v_0) \neq 0 \). This implies for \(F := \Psi(f) \) that \(F(u_0^q) \neq 0 \). Now it follows from Remark 4 above that \(F \) induces an injective map of \(\langle K^+ v_0^q \rangle \) into \(S^p V \), and so

\[
p + 1 = \dim S^p V \geq \dim \langle K^+ v_0^q \rangle = qn + 1 \geq n + 1.
\]

Hence \(\deg f = p + q \geq n + 1 \). \(\square \)

To handle the general case we use the following construction. Let \(G \) be an algebraic group and \(H \subset G \) a closed subgroup. We assume that \(H \) is reductive. For an affine \(H \)-variety \(X \) we define

\[
G \times^H X := (G \times X) / H := \text{Spec}(\mathcal{O}(G \times X)^H)
\]

where \(H \) acts (freely) on the product \(G \times X \) by \(h(g, x) := (gh^{-1}, hx) \), commuting with the action of \(G \) by left multiplication on the first factor. We denote by \([g, x] \) the image of \((g, x) \in G \times X \) in the quotient \(G \times^H X \).

The following is well-known. It follows from general results from geometric invariant theory, see e.g. [MFK94].

(a) The canonical morphism \(G \times^H X \to G/H, \ [g, x] \to gH \), is a fiber bundle (in the étale topology) with fiber \(X \).
(b) If the action of H on X extends to an action of G, then $G \times^H X \simto G/H \times X$ where G acts diagonally on $G/H \times X$ (i.e. the fiber bundle is trivial).

(c) The canonical morphism $\iota : X \hookrightarrow G \times^H X$ given by $x \mapsto [e, x]$ is an H-equivariant closed embedding.

Lemma 1. If $\varphi : G \times^H X \to Y$ is G-separating, then the composite morphism $\varphi \circ \iota : X \to Y$ is H-separating. Moreover, if $S \subseteq \mathcal{O}(G \times^H X)^G$ is a G-separating set, then its image $\iota^*(S) \subseteq \mathcal{O}(X)^H$ is H-separating.

Proof. For $x \in X$ we have $G[e, x] = [G, \overline{H}x]$. Therefore, if $\overline{H}x \cap \overline{H}x' = \emptyset$, then $G[e, x] \cap G[e, x'] = \emptyset$ and so $\varphi \circ \iota(x) = \varphi([e, x]) \neq \varphi([e, x']) = \varphi \circ \iota(x')$. The second claim follows from Proposition 1, because $\mathcal{O}(G \times^H X)^G = \mathcal{O}(G \times X)^G = \mathcal{O}(X)^H$ and so ι^* induces an isomorphism $\mathcal{O}(G \times^H X)^G \simto \mathcal{O}(X)^H$. □

Now let V be a G-module and $X := V|_H$, the underlying H-module. Let H act on G by right-multiplication with the inverse. As H is reductive, the categorical quotient $G//H$ exists (and is an affine G-variety). By [Spr98, Exercise 5.5.9 (8)] it can be identified with the set of left cosets G/H. Choose a closed G-equivariant embedding $G/H \simto Gw_0 \hookrightarrow W$ where W is a G-module (see [DK02, Lemma A.1.9]). Then we get the following composition of closed embeddings where the first one is H-equivariant and the remaining are G-equivariant:

$$\mu : V|_H \hookrightarrow G \times^H V \simto G/H \times V \hookrightarrow W \times V.$$

The map μ is given by $\mu(v) = (w_0, v)$. It follows from Lemma 1 and Remark 1 that for any G-separating morphism $\varphi : W \times V \to Y$ the composition $\varphi \circ \mu : V|_H \to Y$ is H-separating. In particular, if G is reductive, then for any G-separating set $S \subseteq \mathcal{O}(W \times V)$ the image $\mu^*(S) \subseteq \mathcal{O}(V)^H$ is H-separating. Since $\deg \mu^*(f) \leq \deg f$ this implies the following result.

Proposition 6. Let G be a reductive group, $H \subseteq G$ a closed reductive subgroup and V' an H-module. If V' is isomorphic to an H-submodule of a G-module V, then

$$\beta_{sep}(H, V') \leq \beta_{sep}(G).$$

Now we can prove the main result of this section,

Proof of Theorem 1. By Corollary 1 we can assume that G is connected.

(a) Let G be semisimple, $T \subseteq G$ a maximal torus and $B \supseteq T$ a Borel subgroup.

If $\lambda \in X(T)$ is dominant we denote by E^λ the Weyl-module of G of highest weight λ, and by $D^\lambda \subseteq E^\lambda$ the highest weight line. Choose a one-parameter subgroup $\rho : K^* \to T$ and define $k_0 \in \mathbb{Z}$ by $\rho(t)u = t^{k_0} \cdot u$ for $u \in D^\lambda$. For any $n \in \mathbb{N}$ put

$$V'_n := (D^\lambda)^* \oplus D^{n\lambda} \subseteq V_n := (E^\lambda)^* \oplus E^{n\lambda}.$$

Then V'_n is a two-dimensional K^*-module with weights $(-k_0, nk_0)$. Hence $\mathcal{O}(V'_n)^{K^*}$ is generated by a homogeneous invariant of degree $n+1$ and so $\beta_{sep}(K^*, V'_n) = n+1$. Now Proposition 6 implies

$$n + 1 = \beta_{sep}(K^*, V'_n) \leq \beta_{sep}(G)$$

and the claim follows. In addition, we have also shown that $\beta_{sep}(K^*) = \infty$.

(b) If G admits a non-trivial character $\chi : G \to K^*$ then the claim follows because $\beta_{sep}(G) \geq \beta_{sep}(K^*) = \infty$, as we have seen in (a).
(c) If the character group of G is trivial, then either G is unipotent or there is a surjective homomorphism $G \to H$ where H is semisimple (use [Spr98, Corollary 8.1.6 (ii)]). In the first case there is a surjective homomorphism $G \to K^+$ and the claim follows from Proposition 4 and Proposition 5. In the second case the claim follows from (a). □

4. Relative degree bounds

In this section all groups are finite. We want to prove the following result which covers Theorem B from the first section.

Theorem 2. Let G be a finite group, $H \subset G$ a subgroup, V a G-module and W an H-module. Then

$$\beta_{\text{sep}}(H, W) \leq \beta_{\text{sep}}(G, \text{Ind}^G_H W) \quad \text{and} \quad \beta_{\text{sep}}(G, V) \leq [G : H] \beta_{\text{sep}}(H, V).$$

In particular

$$\beta_{\text{sep}}(H) \leq \beta_{\text{sep}}(G) \leq [G : H] \beta_{\text{sep}}(H), \quad \text{and so} \quad \beta_{\text{sep}}(G) \leq |G|.$$

Moreover, if $H \subset G$ is normal, then

$$\beta_{\text{sep}}(G) \leq \beta_{\text{sep}}(G/H) \beta_{\text{sep}}(H).$$

Note that the inequalities $\beta_{\text{sep}}(G, V) \leq [G : H] \beta_{\text{sep}}(H, V)$ and $\beta_{\text{sep}}(G) \leq |G|$ were already proved by Derksen and Kemper ([Kem09, Corollary 24], [DK02, Corollary 3.9.14]).

The proof needs some preparation. Let V, W be finite dimensional vector spaces and $\varphi: V \to W$ a morphism of affine varieties.

Definition 4. The degree of φ is defined in the following way, generalizing the degree of a polynomial function. Choose a basis (w_1, \ldots, w_m) of W, so that $\varphi(v) = \sum_{j=1}^m f_j(v)w_j$ for $v \in V$. Then

$$\deg \varphi := \max \{\deg f_j \mid j = 1, \ldots, m\}.$$

It is easy to see that this is independent of the choice of a basis.

If V is a G-module and $\varphi: V \to W$ a separating morphism, then $\beta_{\text{sep}}(G, V) \leq \deg \varphi$. Moreover, there is a separating morphism $\varphi: V \to W$ for some W such that $\beta_{\text{sep}}(G, V) = \deg \varphi$.

For any (finite dimensional) vector space W we regard $W^d = W \otimes K^d$ as the direct sum of $\dim W$ copies of the standard S_d-module K^d. In this case we have the following result due to Draisma, Kemper and Wehlau [DKW08, Theorem 3.4].

Lemma 2. The polarizations of the elementary symmetric functions form an S_d-separating set of W^d. In particular, there is an S_d-separating morphism $\psi_W: W^d \to K^N$ of degree $\leq d$.

Recall that the polarizations of a function $f \in \mathcal{O}(U)$ to n copies of U are defined in the following way. Write

$$f(t_1u_1 + t_2u_2 + \cdots + t_nu_n) = \sum_{i_1, i_2, \ldots, i_n} t_1^{i_1}t_2^{i_2}\cdots t_n^{i_n}f_{i_1i_2\ldots i_n}(u_1, u_2, \ldots, u_n).$$
Then the functions \(f_{i_1i_2...i_n}(u_1, u_2, \ldots, u_n) \in \mathcal{O}(U^n) \) are called polarizations of \(f \).
Clearly, \(\deg f_{i_1i_2...i_n} \leq \deg f \). Moreover, if \(U \) is a \(G \)-module and \(f \) a \(G \)-invariant, then all \(f_{i_1i_2...i_n} \) are \(G \)-invariants with respect to the diagonal action of \(G \) on \(U^n \).

Proof of Theorem 2. The first inequality \(\beta_{\text{sep}}(H, W) \leq \beta_{\text{sep}}(G, \text{Ind}^G_H W) \) is shown in Corollary 1.

Let \(V \) be a \(G \)-module, \(v, w \in V \), and let \(\varphi: V \to W \) be an \(H \)-separating morphism of degree \(\beta_{\text{sep}}(H, V) \). Consider the partition of \(G \) into \(H \)-right cosets: \(G = \bigcup_{i=1}^d Hg_i \) where \(d := [G : H] \). Define the following morphism

\[
\bar{\varphi}: V \longrightarrow W^d \longrightarrow \psi_W: W^d \rightarrow K^N
\]

where \(\bar{\varphi} := (\varphi(g_1v), \ldots, \varphi(g_dv)) \) and \(\psi_W: W^d \rightarrow K^N \) is the separating morphism from Lemma 2.

We claim that \(\bar{\varphi} \) is \(G \)-separating. In fact, for \(g \in G \) define the permutation \(\sigma \in S_d \) by \(Hg_i g = Hg_{\sigma(i)} \), \(i.e. \) \(g_i g = h_i g_{\sigma(i)} \) for a suitable \(h_i \in H \). Then \(\varphi(g_i g v) = \varphi(h_i g_{\sigma(i)} v) = \varphi(g_{\sigma(i)} v) \) and so \(\bar{\varphi}(g v) = \sigma^{-1} \bar{\varphi}(v) \). This shows that \(\bar{\varphi} \) is \(G \)-invariant.

Assume now that \(gv \neq w \) for all \(g \in G \). This implies that \(h_i g v \neq w \) for all \(h \in H \) and \(i = 1, \ldots, d \), and so \(\varphi(g_i v) \neq \varphi(w) \) for \(i = 1, \ldots, d \), because \(\varphi \) is \(H \)-separating. As a consequence, \(\bar{\varphi}(v) \neq \sigma \bar{\varphi}(w) \) for all permutations \(\sigma \in S_d \), hence \(\bar{\varphi}(v) \neq \bar{\varphi}(w) \), because \(\psi_W \) is \(S_d \)-separating, and so \(\bar{\varphi} \) is \(G \)-separating.

For the degree we get \(\deg \bar{\varphi} \leq \deg \psi_W \cdot \deg \bar{\varphi} \leq d \cdot \deg \varphi = [G : H] \beta_{\text{sep}}(H, V) \). This shows that

\[
\beta_{\text{sep}}(G, V) \leq [G : H] \beta_{\text{sep}}(H, V).
\]

If \(H \subset G \) is normal we can find an \(H \)-separating morphism \(\varphi: V \to W \) of degree \(\beta_{\text{sep}}(H, V) \) such that \(W \) is a \(G/H \)-module and \(\varphi \) is \(G \)-equivariant. Now choose an \(G/H \)-separating morphism \(\psi: W \to U \) of degree \(\beta_{\text{sep}}(G/H, W) \). Then the composition \(\psi \circ \varphi: V \to U \) is \(G \)-separating of degree \(\leq \deg \psi \cdot \deg \varphi \). Thus

\[
\beta_{\text{sep}}(G, V) \leq \beta_{\text{sep}}(G/H, W) \beta_{\text{sep}}(H, V) \leq \beta_{\text{sep}}(G/H) \beta_{\text{sep}}(H),
\]

and the claim follows. \(\square \)

5. Degree bounds for some finite groups

In principle, Proposition 3 allows to compute \(\beta_{\text{sep}}(G) \) for any finite group \(G \). Unfortunately, the invariant ring \(\mathcal{O}(V_{\text{reg}}) \) does not behave well in a computational sense. We have been able to compute \(\beta_{\text{sep}}(G) \) with Magma [BCP97] and the algorithm of [Kem03] in just one case (computation time about 20 minutes):

Proposition 7 (Magma and Proposition 3). Let \(K = 2 \). Then \(\beta_{\text{sep}}(S_3) = 4 \).

Proposition 8. Let \(char K = p > 0 \) and let \(G \) be a \(p \)-group. Then \(\beta_{\text{sep}}(G) = |G| \).

Proof. Let us start with a general remark. Let \(G \) be an arbitrary finite group, and let \(V \) be a permutation module of \(G \), i.e. there is a basis \((v_1, v_2, \ldots, v_n) \) of \(V \) which is permuted under \(G \). Then the invariants are linearly spanned by the orbit sums \(s_m \) of the monomials \(m = x_1^{s_1} x_2^{s_2} \cdots x_n^{s_n} \in \mathcal{O}(V) = K[x_1, x_2, \ldots, x_n] \) which are defined in the usual way:

\[
s_m := \sum_{f \in \Gamma_m} f
\]
Let s_m be the value of s_m on the fixed point $v := v_1 + v_2 + \cdots + v_n \in V$ equals $|Gm|$. Hence, $s_m(v) = 0$ if p divides the index $[G : G_m]$ of the stabilizer G_m of m in G. It follows that for a p-group G we have $s_m(v) \neq 0$ if and only if m is invariant under G.

If, in addition, G acts transitively on the basis (v_1, v_2, \ldots, v_n), then an invariant monomial m is a power of $x_1 x_2 \cdots x_n$, and thus has degree $\ell n \geq \dim V$. If we apply this to the regular representation, the claim follows. \hfill \Box

With Corollary 1 we get the next result.

Corollary 2. Let $\text{char } K = p > 0$ and G be a group of order rp^k with $(r, p) = 1$. Then $\beta_{\text{sep}}(G) \geq p^k$.

Proposition 9. Let G be a cyclic group. Then $\beta_{\text{sep}}(G) = |G|$.

Proof. Let $|G| = rp^k$ where $(r, p) = 1$, $p = \text{char } K$, and choose two elements $g, h \in G$ of order r and $q := p^k$, respectively, so that $G = \langle g, h \rangle$. We define a linear action of G on $V := \bigoplus_{i=1}^l K v_i$ by $g v_i := \zeta \cdot v_i$ and $h v_i := v_{i+1}$ for $i = 1, \ldots, q$ where $\zeta \in K$ is a primitive rth root of unity and $v_{q+1} := v_1$. We claim that the G-invariants $O(V)^G$ are linearly spanned by the orbit sums s_m where $r \mid \deg m$. In fact, $O(V)^g$ is linearly spanned by the monomials of degree ℓr ($\ell \geq 0$), and the subgroup $H := \langle h \rangle \subset G$ permutes these monomials.

Now look again at the element $v := v_1 + v_2 + \cdots + v_q \in V$. If $r \mid \deg m$ then $s_m(v) = |Hm|$, and this is non-zero if and only if the monomial m is invariant under H. This implies that m is a power of $x_1 x_2 \cdots x_q$. Since the degree of m is also a multiple of r we finally get $\deg s_m \geq rq = |G|$. \hfill \Box

Corollary 3. Let G be a finite group. Then we have

$$\beta_{\text{sep}}(G) \geq \max_{g \in G} (\text{ord } g).$$

Let $D_{2n} = \langle \sigma, \rho \rangle$ denote the dihedral group of order $2n$ with $\text{ord}(\sigma) = 2$, $\text{ord}(\rho) = n$ and $\sigma \rho ^{-1} = \rho ^{-1}$.

Proposition 10. Assume that $\text{char } (K) = p$ is an odd prime, and let $r \geq 1$. Then $\beta_{\text{sep}}(D_{2pr}) = 2p^r$.

Note that if $\text{char } (K) = p = 2$, then D_{2pr} is a 2-group, so $\beta_{\text{sep}}(D_{2r+1}) = 2r+1$ by Proposition 8. We conjecture that for $\text{char } (K) = 2$ and p an odd prime, we have $\beta_{\text{sep}}(D_{2p}) = p+1$, which would fit with Proposition 7.

Proof. Put $q = p^r$ and define a linear action of D_{2pr} on $V := \bigoplus_{i=0}^{q-1} K v_i$ by $\rho v_i = v_{i+1}$ and $\sigma v_i = -v_{i-1}$ for $i = 0, 1, \ldots, q - 1$ where $v_j = v_i$ if $j \equiv i \mod q$ for $i, j \in \mathbb{Z}$. As before, the invariants under $H := \langle \rho \rangle$ are linearly spanned by the orbit sums $s_m := \sum_{f \in Hm} f$ of the monomials $m = x_0^{i_0} x_1^{i_1} \cdots x_{q-1}^{i_{q-1}} \in O(V) = K[x_0, x_1, \ldots, x_{q-1}]$. Thus, the D_{2pr}-invariants are linearly spanned by the functions $\{s_m + \sigma s_m \mid m \text{ a monomial}\}$.

For $v := v_0 + v_1 + \cdots + v_q - 1$ we get $\sigma s_m(v) = s_m(\sigma v) = (-1)^{\deg m} s_m(v)$. Therefore, $s_m + \sigma s_m$ is non-zero on v if and only if $s_m(v) \neq 0$ and the degree of m is even. As in the proof of Proposition 9, $s_m(v) \neq 0$ implies that m is a power of $x_0 x_1 \cdots x_{q-1}$ which has to be an even power since q is odd. Thus, for
Let $I_H := \mathcal{O}(V)^G_+ \mathcal{O}(V)$ denote the Hilbert-ideal, i.e. the ideal in $\mathcal{O}(V)$ generated by all homogeneous invariants of positive degree. It is conjectured by Derksen and Kemper that I_H is generated by invariants of positive degree less than $|G|$, see [DK02, Conjecture 3.8.6 (b)]. The following corollary shows that this conjectured bound cannot be sharpened in general.

Corollary 4. Let $char K = p$ and G a p-group (with $p > 0$), or a cyclic group, or $G = D_{2^{p+1}}$ with p odd. Then there exists a G-module V such that I_H is not generated by homogeneous invariants of positive degree strictly less than $|G|$.

Proof. In the proofs of the Propositions 8, 9 and 10 respectively, we constructed a G-module V and a non-zero $v \in V$ such that $f(v) = 0$ for all homogeneous $f \in \mathcal{O}(V)^G$ of positive degree strictly less than $|G|$, but such that there exists a homogeneous $f \in \mathcal{O}(V)^G$ of degree $|G|$ with $f(v) \neq 0$. This shows that $f \notin \mathcal{O}(V)^G_{\frac{1}{q}, < |G|} \mathcal{O}(V)$. □

Now we use relative degree bounds for separating invariants and good degree bounds for generating invariants of non-modular groups, that appear as a subquotient, to get improved degree bounds for separating invariants in the modular case.

Proposition 11. Let $char K = p$ and G be a finite group. Assume there exists a chain of subgroups $N \subset H \subset G$ such that N is a normal subgroup of H and such that H/N is non-cyclic of order s coprime to p. Then

\[\beta_{sep}(G) \leq \begin{cases} \frac{3}{2} |G| & \text{in case } s \text{ is even} \\ \frac{5}{2} |G| & \text{in case } s \text{ is odd}. \end{cases} \]

Proof. By Sezer [Sez02], for a non-cyclic non-modular group U, we have $\beta(U) \leq \frac{3}{4} |U|$ in case $|U|$ is even, and $\beta(U) \leq \frac{5}{2} |U|$ in case $|U|$ is odd. We now assume s is even; the other case is essentially the same. Since $\beta_{sep}(U) \leq \beta(U)$ always holds, we get by using Theorem 2

\[\beta_{sep}(G) \leq \beta_{sep}(H) |G:H| \leq \beta_{sep}(N) \beta_{sep}(H/N) |G:H| \]

\[\leq \beta(H/N) |G:H||N| \leq \frac{3}{4} |H:N| |G:H||N| = \frac{3}{4} |G|. \]

□

Example 1. Assume $p = 3$ and $G = A_4$. The Klein four group is a non-cyclic non-modular subgroup of even order. We get $\beta_{sep}(A_4) \leq \frac{3}{4} |A_4| = 9$. Application of Theorem 2 shows $\beta_{sep}(A_4 \times A_4) \leq \beta_{sep}(A_4)^2 \leq 81$.

Example 2. Let D_{2n} be the dihedral group of order $2n$. We know $n \leq \beta_{sep}(D_{2n})$ by Corollary 3. Assume char $K = p \neq 2$ and $n = p^r m$ with p, m coprime and $m > 1$. Then D_{2n} has the non-cyclic subgroup D_{2m} of even order, so $\beta_{sep}(D_{2n}) \leq \frac{1}{2} 2n = \frac{1}{2} 2r m$. So the only dihedral groups, to which the proposition above does not apply, are those of the form $D_{2^{p+1}}$, which are covered by Proposition 10.

We end this section with two questions:

Question 1. Which finite groups G satisfy $\beta_{sep}(G) = |G|$?

Question 2. Which finite groups G do not have a non-cyclic non-modular subquotient?
The dihedral groups of Proposition 10 satisfy this property, and we get $\beta_{\text{sep}}(G) = |G|$ for those groups. But in characteristic 2, $\beta_{\text{sep}}(S_3) < |S_3|$ by Proposition 7, so the answer to the second question only partially helps to solve the first one.

References

ZENTRUM MATHEMATIK - M11, TECHNISCHE UNIVERSITÄT MÜNCHEN, BOLZMANNSTRASSE 3, D-85748 GARCHING, GERMANY

E-mail address: kohls@ma.tum.de

MATHEMATISCHES INSTITUT, UNIVERSITÄT BASEL, RHEINSPRUNG 21, CH-4051 BASEL, SWITZERLAND

E-mail address: Hanspeter.Kraft@unibas.ch